

TECHNICAL MEMORANDUM

DATE December 1, 2021

TO Agape Learning Center, LLC

ADDRESS 871 Clyde Avenue
Santa Clara, CA 95054

CONTACT Adlin Sofia Netto

FROM Josh Carman, INCE-USA, Senior Associate

SUBJECT Noise Technical Memorandum for 3700 Thomas Road Day Care Facility, Santa Clara, CA

PROJECT NUMBER ALC-02

Noise

Agape Learning Center, the project applicant, proposes a Use Permit to operate a child daycare facility at 3700 Thomas Road #107 at the corner of Montague Expressway and Thomas Road in Santa Clara, California. The proposed project is in an existing commercial/light industrial neighborhood. The daycare would operate in a currently vacant space in the existing commercial building on the property and would include an outdoor play area where children ages two to five would play for two 30-minute periods per day, one between 10:00 and 11:00 am and another between 2:00 and 3:00 pm. The proposed project would accommodate approximately 30 children and operate Monday through Friday from 8:00 am to 6:00 pm. Figure 1 shows the site location and Figure 2 shows the proposed site plan. This noise technical memorandum provides a noise exposure assessment of the proposed daycare/preschool project in terms of the City of Santa Clara's noise and land use compatibility standards.

Noise is most often defined as unwanted sound. Although sound can be easily measured, the perception of noise and the physical response to sound complicate the analysis of its impact on people. People judge the relative magnitude of sound sensation in subjective terms such as "noisiness" or "loudness." Because community receptors are more sensitive to unwanted noise intrusion during the evening and at night, state law and many local jurisdictions use an adjusted 24-hour noise descriptor called the Community Noise Equivalent Level (CNEL) or Day-Night Noise Level (L_{dn}). The CNEL descriptor requires that an artificial increment (or "penalty") of 5 dBA be added to the actual noise level for the hours from 7:00 pm to 10:00 pm and 10 dBA for the hours from 10:00 pm to 7:00 am. The L_{dn} descriptor uses the same methodology except that there is no artificial increment added to the hours between 7:00 pm and 10:00 pm. Both descriptors give roughly the same 24-hour level, with the CNEL being only slightly higher (i.e., more conservative). The CNEL or L_{dn} metrics are commonly applied to the assessment of roadway and airport-related noise sources.

Physical damage to human hearing begins at prolonged exposure to noise levels higher than 85 dBA. Exposure to high noise levels affects the entire system, with prolonged noise exposure in excess of 75 dBA increasing body tensions and affecting blood pressure, functions of the heart, and the nervous system.

Extended periods of noise exposure above 90 dBA results in permanent cell damage, which is the main driver for regulations that protect employee hearing in the workplace. For community environments, the ambient or background noise problem is widespread, though generally worse in urban areas than in outlying, less-developed areas. Elevated ambient noise levels can result in noise interference—e.g., speech interruption/masking, sleep disturbance, disturbance of concentration—and cause annoyance. Additional noise fundamentals and common definitions used in this memorandum are in Attachment A.

APPLICABLE STANDARDS

City of Santa Clara Noise Standards

The City of Santa Clara General Plan has goals and policies to minimize noise impacts in the community. For recreational uses, which would apply to the proposed outdoor play area, the City specifies that noise levels of up to 65 dBA CNEL are “compatible” and that noise levels of up to 75 dBA CNEL require design and insulation to reduce noise levels. In addition, the General Plan directs that outdoor activities associated with the land use should be carried out with minimal interference.

PROJECT OPERATIONAL NOISE

To characterize existing ambient noise levels in the project area, noise monitoring was conducted at a by PlaceWorks staff on Thursday, September 16, 2021, starting at 4:00 pm (afternoon/evening commute). The primary noise source during measurements was traffic on Montague Expressway. Traffic volumes and speed on Thomas Road were secondary. Meteorological conditions during the measurement period were favorable for outdoor sound measurements and were noted to be typical conditions for the season. Generally, conditions included clear skies with daytime temperatures of 74 degrees Fahrenheit (°F) and average wind speeds of 3 mph. The sound level meter was equipped with a windscreens during the measurement.

The sound-level meter used for noise monitoring (Larson Davis model LxT) satisfies the American National Standards Institute (ANSI) standard for Type 1 instrumentation. The sound level meter was set to “slow” response and “A” weighting (dBA). The meter was calibrated prior to and after the monitoring period. The measurement was at least five feet above the ground and away from reflective surfaces. The approximate noise monitoring location (ST-1) is shown in Figure 3.

The results of monitoring indicate that during the afternoon/evening commute, traffic noise is 75 dBA L_{eq} approximately 40 feet from the centerline of the nearest Montague Expressway travel lane. The proposed outdoor play area boundary is approximately 50 feet from this centerline. At this distance, traffic noise levels would be 74 dBA L_{eq} . In general, the CNEL noise level is comparable to the measured peak hour traffic L_{eq} . Therefore, the estimated CNEL noise level at the proposed outdoor play area boundary is 74 dBA CNEL. Without any wall or barrier, this exceeds the City’s normally compatible range of up to 65 dBA CNEL. However, with the proposed six-foot wall shown in Figure 2, traffic noise levels at the outdoor play area would be reduced by approximately 9 dBA to 65 dBA CNEL or less, which would be within the City’s normally compatible range of 65 dBA CNEL or less for outdoor recreational uses. The six-foot wall along the boundary of the outdoor play area should be continuous from grade to top, with no cracks or gaps, and have a minimum surface density of four pounds per square foot.

Source: Nearmap, 2021

0 15
Scale (Feet)

Property Boundary
Project Boundary
Proposed 6-ft Wall

Figure 2
Proposed Site Plan

Source: Nearmap, 2021

Property Boundary

Project Boundary

- **ST-1** Short-Term Noise Measurement Location (1)

Figure 3

Approximate Noise Monitoring Location

Attachment A. Noise Fundamentals and Common Definitions

Fundamentals of Noise

NOISE

Noise is most often defined as unwanted sound; whether it is loud, unpleasant, unexpected, or otherwise undesirable. Although sound can be easily measured, the perception of noise and the physical response to sound complicate the analysis of its impact on people. People judge the relative magnitude of sound sensation in subjective terms such as “noisiness” or “loudness.”

Noise Descriptors

The following are brief definitions of terminology used in this chapter:

- **Sound.** A disturbance created by a vibrating object, which, when transmitted by pressure waves through a medium such as air, is capable of being detected by a receiving mechanism, such as the human ear or a microphone.
- **Noise.** Sound that is loud, unpleasant, unexpected, or otherwise undesirable.
- **Decibel (dB).** A unitless measure of sound, expressed on a logarithmic scale and with respect to a defined reference sound pressure. The standard reference pressure is 20 micropascals ($20 \mu\text{Pa}$).
- **A-Weighted Decibel (dBA).** An overall frequency-weighted sound level in decibels that approximates the frequency response of the human ear.
- **Equivalent Continuous Noise Level (L_{eq}); also called the Energy-Equivalent Noise Level.** The value of an equivalent, steady sound level which, in a stated time period (often over an hour) and at a stated location, has the same A-weighted sound energy as the time-varying sound. Thus, the L_{eq} metric is a single numerical value that represents the equivalent amount of variable sound energy received by a receptor over the specified duration.
- **Statistical Sound Level (L_n).** The sound level that is exceeded “n” percent of time during a given sample period. For example, the L_{50} level is the statistical indicator of the time-varying noise signal that is exceeded 50 percent of the time (during each sampling period); that is, half of the sampling time, the changing noise levels are above this value and half of the time they are below it. This is called the “median sound level.” The L_{10} level, likewise, is the value that is exceeded 10 percent of the time (i.e., near the maximum) and this is often known as the “intrusive sound level.” The L_{90} is the sound level exceeded 90 percent of the time and is often considered the “effective background level” or “residual noise level.”
- **Maximum Sound Level (L_{max}).** The highest RMS sound level measured during the measurement period.
- **Root Mean Square Sound Level (RMS).** The square root of the average of the square of the sound pressure over the measurement period.

- **Day-Night Sound Level (L_{dn} or **DNL**).** The energy-average of the A-weighted sound levels occurring during a 24-hour period, with 10 dB added to the sound levels occurring during the period from 10:00 PM to 7:00 AM.
- **Community Noise Equivalent Level (CNEL).** The energy average of the A-weighted sound levels occurring during a 24-hour period, with 5 dB added from 7:00 PM to 10:00 PM and 10 dB from 10:00 PM to 7:00 AM. NOTE: For general community/environmental noise, CNEL and L_{dn} values rarely differ by more than 1 dB (with the CNEL being only slightly more restrictive – that is, higher than the L_{dn} value). As a matter of practice, L_{dn} and CNEL values are interchangeable and are treated as equivalent in this assessment.
- **Sensitive Receptor.** Noise- and vibration-sensitive receptors include land uses where quiet environments are necessary for enjoyment and public health and safety. Residences, schools, motels and hotels, libraries, religious institutions, hospitals, and nursing homes are examples.

Characteristics of Sound

When an object vibrates, it radiates part of its energy in the form of a pressure wave. Sound is that pressure wave transmitted through the air. Technically, airborne sound is a rapid fluctuation or oscillation of air pressure above and below atmospheric pressure that creates sound waves.

Sound can be described in terms of amplitude (loudness), frequency (pitch), or duration (time). Loudness or amplitude is measured in dB, frequency or pitch is measured in Hertz [Hz] or cycles per second, and duration or time variations is measured in seconds or minutes.

Amplitude

Unlike linear units such as inches or pounds, decibels are measured on a logarithmic scale. Because of the physical characteristics of noise transmission and perception, the relative loudness of sound does not closely match the actual amounts of sound energy. Table 1 presents the subjective effect of changes in sound pressure levels. Ambient sounds generally range from 30 dBA (very quiet) to 100 dBA (very loud). Changes of 1 to 3 dB are detectable under quiet, controlled conditions, and changes of less than 1 dB are usually not discernible (even under ideal conditions). A 3 dB change in noise levels is considered the minimum change that is detectable with human hearing in outside environments. A change of 5 dB is readily discernible to most people in an exterior environment, and a 10 dB change is perceived as a doubling (or halving) of the sound.

Table 1 **Noise Perceptibility**

Change in dB	Noise Level
± 3 dB	Barely perceptible increase
± 5 dB	Readily perceptible increase
± 10 dB	Twice or half as loud
± 20 dB	Four times or one-quarter as loud

Source: California Department of Transportation (Caltrans). 2013, September. Technical Noise Supplement ("TeNS").

Frequency

The human ear is not equally sensitive to all frequencies. Sound waves below 16 Hz are not heard at all, but are “felt” more as a vibration. Similarly, though people with extremely sensitive hearing can hear sounds as high as 20,000 Hz, most people cannot hear above 15,000 Hz. In all cases, hearing acuity falls off rapidly above about 10,000 Hz and below about 200 Hz.

When describing sound and its effect on a human population, A-weighted (dBA) sound levels are typically used to approximate the response of the human ear. The A-weighted noise level has been found to correlate well with people’s judgments of the “noisiness” of different sounds and has been used for many years as a measure of community and industrial noise. Although the A-weighted scale and the energy-equivalent metric are commonly used to quantify the range of human response to individual events or general community sound levels, the degree of annoyance or other response also depends on several other perceptibility factors, including:

- Ambient (background) sound level
- General nature of the existing conditions (e.g., quiet rural or busy urban)
- Difference between the magnitude of the sound event level and the ambient condition
- Duration of the sound event
- Number of event occurrences and their repetitiveness
- Time of day that the event occurs

Duration

Time variation in noise exposure is typically expressed in terms of a steady-state energy level equal to the energy content of the time varying period (called L_{eq}), or alternately, as a statistical description of the sound level that is exceeded over some fraction of a given observation period. For example, the L_{50} noise level represents the noise level that is exceeded 50 percent of the time; half the time the noise level exceeds this level and half the time the noise level is less than this level. This level is also representative of the level that is exceeded 30 minutes in an hour. Similarly, the L_2 , L_8 and L_{25} values represent the noise levels that are exceeded 2, 8, and 25 percent of the time or 1, 5, and 15 minutes per hour, respectively. These “n” values are typically used to demonstrate compliance for stationary noise sources with many cities’ noise ordinances. Other values typically noted during a noise survey are the L_{min} and L_{max} . These values represent the minimum and maximum root-mean-square noise levels obtained over the measurement period, respectively.

Because community receptors are more sensitive to unwanted noise intrusion during the evening and at night, state law and many local jurisdictions use an adjusted 24-hour noise descriptor called the Community Noise Equivalent Level (CNEL) or Day-Night Noise Level (L_{dn}). The CNEL descriptor requires that an artificial increment (or “penalty”) of 5 dBA be added to the actual noise level for the hours from 7:00 PM to 10:00 PM and 10 dBA for the hours from 10:00 PM to 7:00 AM. The L_{dn} descriptor uses the same methodology except that there is no artificial increment added to the hours between 7:00 PM and 10:00 PM. Both descriptors give roughly the same 24-hour level, with the CNEL being only slightly more restrictive (i.e., higher). The CNEL or L_{dn} metrics are commonly applied to the assessment of roadway and airport-related noise sources.

Sound Propagation

Sound dissipates exponentially with distance from the noise source. This phenomenon is known as “spreading loss.” For a single-point source, sound levels decrease by approximately 6 dB for each doubling of distance from the source (conservatively neglecting ground attenuation effects, air absorption factors, and barrier shielding). For example, if a backhoe at 50 feet generates 84 dBA, at 100 feet the noise level would be 79 dBA, and at 200 feet it would be 73 dBA. This drop-off rate is appropriate for noise generated by on-site operations from stationary equipment or activity at a project site. If noise is produced by a line source, such as highway traffic, the sound decreases by 3 dB for each doubling of distance over a reflective (“hard site”) surface such as concrete or asphalt. Line source noise in a relatively flat environment with ground-level absorptive vegetation decreases by an additional 1.5 dB for each doubling of distance.

Psychological and Physiological Effects of Noise

Physical damage to human hearing begins at prolonged exposure to noise levels higher than 85 dBA. Exposure to high noise levels affects the entire system, with prolonged noise exposure in excess of 75 dBA increasing body tensions, thereby affecting blood pressure and functions of the heart and the nervous system. Extended periods of noise exposure above 90 dBA results in permanent cell damage, which is the main driver for employee hearing protection regulations in the workplace. For community environments, the ambient or background noise problem is widespread, through generally worse in urban areas than in outlying, less-developed areas. Elevated ambient noise levels can result in noise interference (e.g., speech interruption/masking, sleep disturbance, disturbance of concentration) and cause annoyance. Since most people do not routinely work with decibels or A-weighted sound levels, it is often difficult to appreciate what a given sound pressure level number means. To help relate noise level values to common experience, Table 2 shows typical noise levels from familiar sources.

Table 2 **Typical Noise Levels**

Common Outdoor Activities	Noise Level (dBA)	Common Indoor Activities
Onset of physical discomfort	120+	
	110	Rock Band (near amplification system)
Jet Flyover at 1,000 feet	100	
Gas Lawn Mower at three feet	90	
Diesel Truck at 50 feet, at 50 mph	80	Food Blender at 3 feet Garbage Disposal at 3 feet
Noisy Urban Area, Daytime	70	Vacuum Cleaner at 10 feet
Commercial Area		Normal speech at 3 feet
Heavy Traffic at 300 feet	60	
		Large Business Office
Quiet Urban Daytime	50	Dishwasher Next Room
Quiet Urban Nighttime	40	Theater, Large Conference Room (background)
Quiet Suburban Nighttime	30	Library
Quiet Rural Nighttime	20	Bedroom at Night, Concert Hall (background)
		Broadcast/Recording Studio
	10	
Lowest Threshold of Human Hearing	0	Lowest Threshold of Human Hearing

Source: California Department of Transportation (Caltrans). 2013, September. Technical Noise Supplement ("TeNS").